Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38619862

RESUMO

Diphenyl ether herbicides are extensively utilized in agricultural systems, but their residues threaten the health of sensitive rotation crops. Functional microbial strains can degrade diphenyl ether herbicides in the rhizosphere of crops, facilitating the restoration of a healthy agricultural environment. However, the interplay between microorganisms and plants in diphenyl ether herbicides degradation remains unclear. Thus, the herbicide-degrading strain Bacillus sp. Za and the sensitive crop, maize, were employed to uncover the interaction mechanism. The degradation of diphenyl ether herbicides by strain Bacillus sp. Za was promoted by root exudates. The strain induced root exudates re-secretion in diphenyl ether herbicide-polluted maize. We further showed that root exudates enhanced the rhizosphere colonization and the biofilm biomass of strain Za, augmenting its capacity to degrade diphenyl ether herbicide. Root exudates regulated gene fliZ, pivotal in biofilm formation. Wild-type strain Za significantly reduced herbicide toxicity to maize compared to the ZaΔfliZ mutant. Moreover, root exudates promoted strain Za growth and chemotaxis, which was related to biofilm formation. This mutualistic relationship between the microorganisms and the plants demonstrates the significance of plant-microbe interactions in shaping diphenyl ether herbicide degradation in rhizosphere soils.

2.
Environ Pollut ; 336: 122460, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37634569

RESUMO

Fomesafen is a diphenyl ether herbicide used to control the growth of broadleaf weeds in bean fields. The persistence, phytotoxicity, and negative impact on crop rotation associated with this herbicide have led to an increasing concern about the buildup of fomesafen residues in agricultural soils. The exigent matter of treatment and remediation of soils contaminated with fomesafen has surfaced. Nevertheless, the degradation pathway of fomesafen in soil remains nebulous. In this study, Bacillus sp. Za was utilized to degrade fomesafen residues in black and yellow brown soils. Fomesafen's degradation rate by strain Za in black soil reached 74.4%, and in yellow brown soil was 69.2% within 30 days. Twelve intermediate metabolites of fomesafen were identified in different soils, with nine metabolites present in black soil and eight found in yellow brown soil. Subsequently, the degradation pathway of fomesafen within these two soils was inferred. The dynamic change process of soil bacterial community structure in the degradation of fomesafen by strain Za was analyzed. The results showed that strain Za potentially facilitate the restoration of bacterial community diversity and richness in soil samples treated with fomesafen, and there were significant differences in species composition at phylum and genus levels between these two soils. However, both soils shared a dominant phylum and genus, Actinobacteriota, Proteoobacteria, Firmicutes and Chloroflexi dominated in two soils, with a high relative abundance of Sphingomonas and Bacillus. Moreover, an intermediate metabolite acetaminophen degrading bacterium, designated as Pseudomonas sp. YXA-1, was isolated from yellow brown soil. When strain YXA-1 was employed in tandem with strain Za to remediate fomesafen contaminated soil, the degradation rate of fomesafen markedly increased. Overall, this study furnishes crucial insights into the degradation pathway of fomesafen in soil, and presents bacterial strain resources potentially beneficial for soil remediation in circumstances of fomesafen contamination.


Assuntos
Bacillus , Herbicidas , Poluentes do Solo , Bacillus/metabolismo , Poluentes do Solo/análise , Microbiologia do Solo , Solo/química , Bactérias/metabolismo , Herbicidas/análise , Biodegradação Ambiental
3.
Appl Microbiol Biotechnol ; 107(16): 5269-5279, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37395748

RESUMO

Diphenyl ether herbicides, typical globally used herbicides, threaten the agricultural environment and the sensitive crops. The microbial degradation pathways of diphenyl ether herbicides are well studied, but the nitroreduction of diphenyl ether herbicides by purified enzymes is still unclear. Here, the gene dnrA, encoding a nitroreductase DnrA responsible for the reduction of nitro to amino groups, was identified from the strain Bacillus sp. Za. DnrA had a broad substrate spectrum, and the Km values of DnrA for different diphenyl ether herbicides were 20.67 µM (fomesafen), 23.64 µM (bifenox), 26.19 µM (fluoroglycofen), 28.24 µM (acifluorfen), and 36.32 µM (lactofen). DnrA also mitigated the growth inhibition effect on cucumber and sorghum through nitroreduction. Molecular docking revealed the mechanisms of the compounds fomesafen, bifenox, fluoroglycofen, lactofen, and acifluorfen with DnrA. Fomesafen showed higher affinities and lower binding energy values for DnrA, and residue Arg244 affected the affinity between diphenyl ether herbicides and DnrA. This research provides new genetic resources and insights into the microbial remediation of diphenyl ether herbicide-contaminated environments. KEY POINTS: • Nitroreductase DnrA transforms the nitro group of diphenyl ether herbicides. • Nitroreductase DnrA reduces the toxicity of diphenyl ether herbicides. • The distance between Arg244 and the herbicides is related to catalytic efficiency.


Assuntos
Bacillus , Herbicidas , Bacillus/genética , Bacillus/metabolismo , Herbicidas/metabolismo , Simulação de Acoplamento Molecular , Éteres Difenil Halogenados , Biotransformação , Nitrorredutases/química , Nitrorredutases/genética , Nitrorredutases/metabolismo
4.
Front Microbiol ; 13: 1075930, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504824

RESUMO

The long-term and widespread use of diphenyl ether herbicides has caused serious soil residue problems and threatens the agricultural ecological environment. The development of biodegrading agents using high-efficiency degrading strains as pesticide residue remediation materials has been widely recognized. In this study, the strain Bacillus sp. Za was used to prepare solid agents for the remediation of diphenyl ether herbicides-contaminated soil. The ratio of organic fertilizer was 1:3 (pig manure: cow dung), the inoculum amount of Za was 10%, the application amount of solid agents was 7%, and the application mode was mixed application, all of which were the most suitable conditions for solid agents. After the solid agents were stored for 120 days, the amount of Za remained above 108 CFU/g. The degradation rates of the solid agents for lactofen, bifenox, fluoroglycofen, and fomesafen in soil reached 87.40, 82.40, 78.20, and 65.20%, respectively, on the 7th day. The application of solid agents alleviated the toxic effect of lactofen residues on maize seedlings. A confocal laser scanning microscope (CLSM) was used to observe the colonization of Za-gfp on the surface of maize roots treated in the solid agents, and Za-gfp mainly colonized the elongation zone and the mature area of maize root tips, and the colonization time exceeded 21 days. High-throughput sequencing analysis of soil community structural changes in CK, J (solid agents), Y (lactofen), and JY (solid agents + lactofen) groups showed that the addition of solid agents could restore the bacterial community structure in the rhizosphere soil of maize seedlings. The development of solid agents can facilitate the remediation of soil contaminated with diphenyl ether herbicide residues and improve the technical level of the microbial degradation of pesticide residues.

5.
Sci Total Environ ; 806(Pt 4): 151357, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34742792

RESUMO

The extensive use of the diphenyl ether herbicide lactofen in recent years has caused serious environmental problems. Therefore, detoxification and elimination of lactofen from the environment are urgently required. In this study, the lactofen-degrading strain Bacillus sp. YS-1 was isolated, which achieved a 97.6% degradation rate of 50 mg/L lactofen within 15 h. The ester bond of lactofen was hydrolyzed, which generated acifluorfen, and then, the nitro group was reduced to the amino group, which generated aminoacifluorfen. Finally, the amino group was acetylated, which formed acetylated aminoacifluorfen, a novel end product in the degradation of lactofen. The toxicity of acetylated aminoacifluorfen to the root and seedling growth of cucumber and sorghum was significantly decreased compared with that of lactofen. The two esterase genes rhoE and rapE, encoding two esterases responsible for lactofen hydrolysis to acifluorfen, were cloned and expressed. The amino acid sequences encoded by rhoE and rapE were 27.78% and 88.21% identical with known esterases, respectively. The optimum temperatures for RhoE and RapE degradation of lactofen were 35 °C and 25 °C, respectively, and both esterases displayed maximal activity at pH 8.0. Both RhoE and RapE prioritized the degradation of (S)-(+)-lactofen, (S)-(-)-quizalofop-ethyl, and (S)-(-)-diclofop-methyl. This study provided the resources of bacterial strain and hydrolyzing enzyme for the removal of lactofen from the environment and the bioremediation of herbicide-contaminated soil.


Assuntos
Bacillus , Herbicidas , Biodegradação Ambiental , Esterases , Éteres Difenil Halogenados
6.
Environ Pollut ; 292(Pt A): 118366, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34653590

RESUMO

Bensulfuron-methyl (BSM) residues in soil threaten the rotation of BSM-sensitive crops. Microbial biofilms formed on crop roots could improve the ability of microbes to survive and protect crop roots. However, the research on biofilms with the purpose of mitigating or even eliminating BSM damage to sensitive crops is very limited. In this study, one BSM-degrading bacterium, Hansschlegelia zhihuaiae S113, colonized maize roots by forming a biofilm. Root exudates were associated with increased BSM degradation efficiency with strain S113 in rhizosphere soil relative to bulk soil, so the interactions among BSM degradation, root exudates, and biofilms may provide a new approach for the BSM-contaminated soil bioremediation. Root exudates and their constituent organic acids, including fumaric acid, tartaric acid, and l-malic acid, enhanced biofilm formation with 13.0-22.2% increases, owing to the regulation of genes encoding proteins responsible for cell motility/chemotaxis (fla/che cluster) and materials metabolism, thus promoting S113 population increases. Additionally, root exudates were also able to induce exopolysaccharide production to promote mature biofilm formation. Complete BSM degradation and healthy maize growth were found in BSM-contaminated rhizosphere soil treated with wild strain S113, compared to that treated with loss-of-function mutants ΔcheA-S113 (89.3%, without biofilm formation ability) and ΔsulE-S113 (22.1%, without degradation ability) or sterile water (10.7%, control). Furthermore, the biofilm mediated by organic acids, such as l-malic acid, exhibited a more favorable effect on BSM degradation and maize growth. These results showed that root exudates and their components (such as organic acids) can induce the biosynthesis of the biofilm to promote BSM degradation, emphasizing the contribution of root biofilm in reducing BSM damage to maize.


Assuntos
Methylocystaceae , Zea mays , Biofilmes , Raízes de Plantas , Rizosfera , Microbiologia do Solo
7.
Pharmazie ; 74(7): 418-422, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31288898

RESUMO

Diacylglycerol kinase zeta (DGKZ) is associated with the pathogenesis of a variety of malignant diseases, but its biological function on acute myeloid leukemia (AML) has not been explored. The aim of this study was to analyze apoptosis induced by knockdown of DGKZ and its mechanism in human acute myeloid leukemia HL-60 cells. qRT-PCR was carried out to detect the expression of DGKZ in HL-60, THP-1, Jurkat, K562, and CD34 cell lines. Additionally the expression of DGKZ in AML cells obtained from patients were detected by qRT-PCR. Cell Counting Kit-8 (CCK-8) assay was used to determine the viability of HL-60 cells DGKZ knocked down. Apoptosis and cell cycle phase of HL-60 cells after DGKZ knockdown were evaluated by flow cytometry. Western blot analysis was performed to investigate expressions of the proteins related to apoptosis and cell cycle. Results showed that expression of DGKZ was significantly higher in HL-60 and AML cells obtained from patients than those of Jurkat, THP-1, K562 and human CD34 cell. Compared with the shCtrl group, DGKZ was markedly knocked down in HL-60 cells transfected with lentivirus encoding shRNA. DGKZ knockdown significantly inhibited the proliferation and induced cycle arrest at the G2/M phase in HL-60 cells. The expressions of MAPK, caspase-3, caspase-8, cytochrome C markedly increased and p-MAPK and survivin decreased in HL-60 cells after DGKZ knockdown. The results suggest that knockdown of DGKZ can induce apoptosis and G2/M phase arrest in human acute myeloid leukemia HL-60 cells through the MAPK/survivin/caspase pathway.


Assuntos
Apoptose/genética , Diacilglicerol Quinase/genética , Leucemia Mieloide Aguda/genética , Caspases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Técnicas de Silenciamento de Genes , Células HL-60 , Humanos , Leucemia Mieloide Aguda/patologia , Pontos de Checagem da Fase M do Ciclo Celular/genética , Sistema de Sinalização das MAP Quinases/genética , RNA Interferente Pequeno/genética , Survivina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...